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A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has
recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the
nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes.
A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts
to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In
particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint
violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem.
Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results
for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.
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1. Introduction
The classical paradigm in mathematical programming is
to develop a model that assumes that the input data is
precisely known and equal to some nominal values. This
approach, however, does not take into account the influ-
ence of data uncertainties on the quality and feasibility of
the model. It is therefore conceivable that as the data take
values different than the nominal ones, several constraints
may be violated, and the optimal solution found using the
nominal data may no longer be optimal or even feasible.
This observation raises the natural question of designing
solution approaches that are immune to data uncertainty;
that is, they are “robust.”
To illustrate the importance of robustness in practical

applications, we quote from the case study by Ben-Tal and
Nemirovski (2000) on linear optimization problems from
the Net Lib library:

In real-world applications of Linear Programming, one can-
not ignore the possibility that a small uncertainty in the data
can make the usual optimal solution completely meaningless
from a practical viewpoint.

Naturally, the need arises to develop models that are
immune, as far as possible, to data uncertainty. The first
step in this direction was taken by Soyster (1973), who
proposes a linear optimization model to construct a solu-
tion that is feasible for all data that belong in a convex set.
The resulting model produces solutions that are too conser-
vative in the sense that we give up too much of optimal-
ity for the nominal problem in order to ensure robustness

(see the comments of Ben-Tal and Nemirovski 2000).
Soyster considers the linear optimization problem

maximize c′x

subject to
n∑
j=1

Ajxj � b� ∀Aj ∈Kj� j = 1� � � � � n

x� 0�

where the uncertainty sets Kj are convex. Note that the case
considered is “columnwise” uncertainty; i.e., the columns
Aj of the constraint matrix are known to belong to a given
convex set Kj . Soyster (1973) shows that the problem is
equivalent to

maximize c′x

subject to
n∑
j=1

�Ajxj � b�

x� 0�

(1)

where āij = supAj∈Kj 	Aij�.
A significant step forward for developing a theory for

robust optimization was taken independently by Ben-Tal
and Nemirovski (1998, 1999, 2000), El-Ghaoui and Lebret
(1997), and El-Ghaoui et al. (1998). To address the issue
of overconservatism, these papers proposed less conserva-
tive models by considering uncertain linear problems with
ellipsoidal uncertainties, which involve solving the robust
counterparts of the nominal problem in the form of conic
quadratic problems (see Ben-Tal and Nemirovski 1999).
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With properly chosen ellipsoids, such a formulation can be
used as a reasonable approximation to more complicated
uncertainty sets. However, a practical drawback of such
an approach is that it leads to nonlinear, although convex,
models, which are more demanding computationally than
the earlier linear models by Soyster (1973) (see also the
discussion in Ben-Tal and Nemirovski 2000).
In this research, we propose a new approach for robust

linear optimization that retains the advantages of the linear
frameworkofSoyster (1973).More importantly, our approach
offers full control on thedegreeof conservatism for every con-
straint.Weprotect against violationof constraint i determinis-
tically, when only a prespecified number �i of the coefficients
changes; that is, we guarantee that the solution is feasible if
less than �i uncertain coefficients change. Moreover, we pro-
vide aprobabilistic guarantee that even ifmore than�i change,
then the robust solutionwill be feasible with high probability.
In the process we prove a new, to the best of our knowl-
edge, tight bound on sums of symmetrically distributed ran-
dom variables. In this way, the proposed framework is at least
as flexible as the one proposed by Ben-Tal and Nemirovski
(1998, 1999, 2000), El-Ghaoui and Lebret (1997), El-Ghaoui
et al. (1998), and possibly more. Unlike these approaches,
the robust counterparts we propose are linear optimization
problems, and thus our approach readily generalizes to dis-
crete optimization problems. To the best of our knowledge,
there was no similar work done in the robust discrete opti-
mization domain that involves deterministic and probabilis-
tic guarantees of constraints against violation.

Structure of the Paper

In §2, we present the different approaches for robust linear
optimization from the literature and discuss their merits. In
§3, we propose the new approach and show that it can be
solved as a linear optimization problem. In §4, we show
that the proposed robust LP has attractive probabilistic and
deterministic guarantees. Moreover, we perform sensitivity
analysis of the degree of protection the proposed method
offers. We provide extensions to our basic framework deal-
ing with correlated uncertain data in §5. In §6, we apply
the proposed approach to a portfolio problem, a knapsack
problem, and a problem from the Net Lib library. Finally,
§7 contains some concluding remarks.

2. Robust Formulation of Linear
Programming Problems

2.1. Data Uncertainty in Linear Optimization

We consider the following nominal linear optimization
problem:

maximize c′x

subject to Ax� b

l� x� u�

In the above formulation, we assume that data uncertainty
only affects the elements in matrix A. We assume with-
out loss of generality that the objective function c is not
subject to uncertainty, since we can use the objective maxi-
mize z, add the constraint z−c′x� 0, and thus include this
constraint into Ax� b.

Model of Data Uncertainty U. Consider a particular
row i of the matrix A and let Ji represent the set of coef-
ficients in row i that are subject to uncertainty. Each entry
aij , j ∈ Ji is modeled as a symmetric and bounded ran-
dom variable ãij , j ∈ Ji (see Ben-Tal and Nemirovski 2000)
that takes values in �aij − âij � aij + âij �. Associated with
the uncertain data ãij , we define the random variable �ij =
	ãij−aij�/âij , which obeys an unknown but symmetric dis-
tribution, and takes values in �−1�1�.

2.2. The Robust Formulation of Soyster

As we have mentioned in the introduction, Soyster (1973)
considers columnwise uncertainty. Under the model of data
uncertainty U, the robust Formulation (1) is as follows:

maximize c′x

subject to
∑
j

aijxj +
∑
j∈Ji
âijyj � bi ∀i

−yj � xj � yj ∀j
l� x� u

y� 0�

(2)

Let x∗ be the optimal solution of Formulation (2). At opti-
mality, clearly, yj = �x∗j �, and thus∑
j

aijx
∗
j +

∑
j∈Ji
âij �x∗j �� bi ∀i�

We next show that for every possible realization ãij of the
uncertain data, the solution remains feasible; that is, the
solution is “robust.” We have∑
j

ãijx
∗
j =

∑
j

aijx
∗
j +

∑
j∈Ji
�ij âijx

∗
j

�
∑
j

aijx
∗
j +

∑
j∈Ji
âij �x∗j �� bi ∀i�

For every ith constraint, the term,
∑
j∈Ji âij �xj � gives the

necessary “protection” of the constraint by maintaining a
gap between

∑
j aijx

∗
j and bi.

2.3. The Robust Formulation of Ben-Tal
and Nemirovski

Although the Soyster method (1973) admits the highest
protection, it is also the most conservative in practice in
the sense that the robust solution has an objective func-
tion value much worse than the objective function value of
the solution of the nominal linear optimization problem. To
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address this conservatism, Ben-Tal and Nemirovski (2000)
propose the following robust problem:

maximize c′x

subject to
∑
j

aijxj +
∑
j∈Ji
âijyij

+�i
√∑
j∈Ji
â2ij z

2
ij � bi ∀i

−yij � xj − zij � yij ∀i� j ∈ Ji
l� x� u

y� 0�

(3)

Under the model of data uncertainty U, the authors have
shown that the probability that the i constraint is violated
is at most exp	−�2

i /2�. The robust Model (3) is less con-
servative than Model (2), as every feasible solution of the
latter problem is a feasible solution to the former problem.
We next examine the sizes of Formulations (2) and (3).

We assume that there are k coefficients of the m×n nomi-
nal matrix A that are subject to uncertainty. Given that the
original nominal problem has n variables and m constraints
(not counting the bound constraints), Model (2) is a lin-
ear optimization problem with 2n variables, and m + 2n
constraints. In contrast, Model (3) is a second-order cone
problem, with n + 2k variables and m + 2k constraints.
Since Model (3) is a nonlinear one, it is not particularly
attractive for solving robust discrete optimization models.

3. The New Robust Approach
In this section, we propose a robust formulation that is lin-
ear, is able to withstand parameter uncertainty under the
model of data uncertainty U without excessively affecting
the objective function, and readily extends to discrete opti-
mization problems.
We motivate the formulation as follows. Consider the

ith constraint of the nominal problem a′ix � bi. Let Ji be
the set of coefficients aij , j ∈ Ji that are subject to param-
eter uncertainty; i.e., ãij , j ∈ Ji takes values according to
a symmetric distribution with mean equal to the nominal
value aij in the interval �aij − âij � aij + âij �. For every i,
we introduce a parameter �i, not necessarily integer, that
takes values in the interval �0� �Ji��. As would become clear
below, the role of the parameter �i is to adjust the robust-
ness of the proposed method against the level of conser-
vatism of the solution. Speaking intuitively, it is unlikely
that all of the aij , j ∈ Ji will change. Our goal is to be pro-
tected against all cases that up to ��i� of these coefficients
are allowed to change, and one coefficient ait changes by
	�i−��i��âit . In other words, we stipulate that nature will
be restricted in its behavior, in that only a subset of the
coefficients will change in order to adversely affect the
solution. We will develop an approach that has the property
that if nature behaves like this, then the robust solution will

be feasible deterministically, and moreover, even if more
than ��i� change, then the robust solution will be feasible
with very high probability.
We consider the following (still nonlinear) formulation:

maximize c′x
subject to∑
j

aijxj

+ max
�Si∪�ti��Si⊆Ji� �Si �=��i�� ti∈Ji\Si�

{∑
j∈Si
âijyj + 	�i−��i��âiti yt

}

� bi ∀i (4)

− yj � xj � yj ∀j
l� x� u

y� 0�

If �i is chosen as an integer, the ith constraint is pro-
tected by �i	x� �i�=max�Si �Si⊆Ji� �Si �=�i��

∑
j∈Si âij �xj ��. Note

that when �i = 0, �i	x� � i�= 0, the constraints are equiv-
alent to that of the nominal problem. Likewise, if �i =
�Ji�, we have Soyster’s method. Therefore, by varying �i ∈
�0� �Ji��, we have the flexibility of adjusting the robust-
ness of the method against the level of conservatism of the
solution.
In order to reformulate Model (4) as a linear optimization

model we need the following proposition.

Proposition 1. Given a vector x∗, the protection function
of the ith constraint,

�i	x
∗�� i�

= max
�Si∪�ti��Si⊆Ji��Si �=��i��ti∈Ji\Si�

{∑
j∈Si
âij �x∗j �+	�i−��i��âiti �x∗j �

}
�

(5)

equals the objective function of the following linear opti-
mization problem:

�i	x
∗� � i� = maximize

∑
j∈Ji
âij �x∗j �zij

subject to
∑
j∈Ji
zij � �i

0� zij � 1 ∀j ∈ Ji�

(6)

Proof. Clearly the optimal solution value of Problem (6)
consists of ��i� variables at 1 and one variable at �i−��i�.
This is equivalent to the selection of subset �Si ∪ �ti� � Si ⊆
Ji, �Si� = ��i�� ti ∈ Ji\Si� with corresponding cost function∑
j∈Si âij �x∗j � + 	�i−��i��âiti �x∗j �. �

We next reformulate Model (4) as a linear optimization
model.
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Theorem 1. Model (4) has an equivalent linear formula-
tion as follows:

maximize c′x

subject to
∑
j

aijxj + zi�i+
∑
j∈Ji
pij � bi ∀i

zi+pij � âijyj ∀i� j ∈ Ji
−yj � xj � yj ∀j
lj � xj � uj ∀j
pij � 0 ∀i� j ∈ Ji
yj � 0 ∀j
zi � 0 ∀i�

(7)

Proof. We first consider the dual of Problem (6):

minimize
∑
j∈Ji
pij + �izi

subject to zi+pij � âij �x∗j � ∀i� j ∈ Ji
pij � 0 ∀j ∈ Ji
zi � 0 ∀i�

(8)

By strong duality, since Problem (6) is feasible and
bounded for all �i ∈ �0� �Ji��, then the dual problem (8) is
also feasible and bounded and their objective values coin-
cide. Using Proposition 1, we have that �i	x

∗� �i� is equal
to the objective function value of Problem (8). Substituting
to Problem (4), we obtain that Problem (4) is equivalent to
the linear optimization problem (7). �

Remark. The robust linear optimization Model (7) has n+
k+1 variables and m+k+n constraints, where k=∑

i �Ji�
the number of uncertain data, contrasted with n+ 2k vari-
ables and m+2k constraints for the nonlinear Formulation
(3). In most real-world applications, the matrix A is sparse.
An attractive characteristic of Formulation (7) is that it pre-
serves the sparsity of the matrix A.

4. Probability Bounds of Constraint
Violation

It is clear by the construction of the robust formulation
that if up to ��i� of the Ji coefficients aij change within
their bounds, and up to one coefficient aiti changes by
	�i−��i��âit , then the solution of Problem (7) will remain
feasible. In this section, we show that under the Model
of Data Uncertainty U, the robust solution is feasible with
high probability. The parameter �i controls the trade-off
between the probability of violation and the effect to the
objective function of the nominal problem, which is what
we call the price of robustness.
In preparation for our main result in this section, we

prove the following proposition.

Proposition 2. Let x∗ be an optimal solution of Prob-
lem (7). Let S∗i and t

∗
i be the set and the index, respectively,

that achieve the maximum for �i	x
∗� �i� in Equation (5).

Suppose that the data in matrix A are subjected to the model
of data uncertainty U.
(a) The probability that the ith constraint is violated

satisfies:

Pr

(∑
j

ãijx
∗
j > bi

)
� Pr

(∑
j∈Ji
!ij�ij � �i

)
�

where

!ij =


1� if j ∈ S∗i
âij �x∗j �
âir∗ �x∗r∗ �

� if j ∈ Ji\S∗i
and

r∗ = argmin
r∈S∗i ∪�t∗i �

âir �x∗r ��

(b) The quantities !ij satisfy !ij � 1 for all j ∈ Ji\S∗i .
Proof
(a) Let x∗, S∗i , and t

∗
i be the solution of Model (4).

Then the probability of violation of the ith constraint is
as follows:

Pr

(∑
j

ãijx
∗
j > bi

)

= Pr
(∑

j

aijx
∗
j +

∑
j∈Ji
�ij âijx

∗
j > bi

)

� Pr

(∑
j∈Ji
�ij âij �x∗j �>

∑
j∈S∗i
âij �x∗j � + 	�i−��i��âit∗i �x∗t∗i �

)
(9)

= Pr
( ∑
j∈Ji\S∗i

�ij âij �x∗j �>
∑
j∈S∗i
âij �x∗j �	1−�ij�

+ 	�i−��i��âit∗i �x∗t∗i �
)

� Pr

( ∑
j∈Ji\S∗i

�ij âij �x∗j �> âir∗ �x∗r∗ �

·
(∑
j∈S∗i
	1−�ij�+ 	�i−��i��

))
(10)

= Pr
(∑
j∈S∗i
�ij +

∑
j∈Ji\S∗i

âij �x∗j �
âir∗ �x∗r∗ �

�ij > �i

)

= Pr
(∑
j∈Ji
!ij�ij > �i

)

� Pr

(∑
j∈Ji
!ij�ij � �i

)
�



Bertsimas and Sim: The Price of Robustness
Operations Research 52(1), pp. 35–53, © 2004 INFORMS 39

Inequality (9) follows from Inequality (4), since x∗ satisfies∑
j

aijx
∗
j +

∑
j∈S∗i
âijyj + 	�i−��i��âit∗i yt∗i � bi�

Inequality (10) follows from 1 − �ij � 0 and r∗ =
arg minr∈S∗i ∪�t∗i � âir �x∗r �.
(b) Suppose there exist l ∈ Ji\S∗i such that âil�x∗l � >

âir∗ �x∗r∗ �. If l �= t∗i , then, since r∗ ∈ S∗i ∪ �t∗�, we could
increase the objective value of

∑
j∈S∗i âij �x∗j � + 	�i −

��i��âit∗ �x∗t∗ � by exchanging l with r∗ from the set S∗i ∪�t∗i �.
Likewise, if l= t∗i , r∗ ∈ S∗i , we could exchange t∗i with r∗
in the set S∗i to increase the same objective function. In
both cases, we arrive at a contradiction that S∗i ∪ �t∗i � is an
optimum solution to this objective function. �

We are naturally led to bound the probability

Pr
(∑
j∈Ji
!ij�ij � �i

)
�

The next result provides a bound that is independent of the
solution x∗.

Theorem 2. If �ij , j ∈ Ji are independent and symmetri-
cally distributed random variables in �−1�1�, then

Pr
(∑
j∈Ji
!ij�ij � �i

)
� exp

(
− � 2i
2�Ji�

)
� (11)

Proof. Let # > 0. Then

Pr
(∑
j∈Ji
!ij�ij � �i

)

�
E�exp	#

∑
j∈Ji !ij�ij ��

exp	#�i�
(12)

=
∏
j∈Ji E�exp	#!ij�ij ��

exp	#�i�
(13)

=
∏
j∈Ji 2

∫ 1
0

∑�
k=0		#!ij��

2k/	2k�!�dF�ij 	��
exp	#�i�

(14)

�

∏
j∈Ji

∑�
k=0		#!ij�

2k�/	2k�!
exp	#�i�

�

∏
j∈Ji exp

(
#2!2ij/2

)
exp	#�i�

� exp
(
�Ji�
#2

2
− #�i

)
� (15)

Inequality (12) follows from Markov’s inequality, Equa-
tions (13) and (14) follow from the independence and sym-
metric distribution assumption of the random variables �ij .
Inequality (15) follows from !ij � 1. Selecting # = �i/�Ji�,
we obtain (11). �

Remark. While the bound we established has the attrac-
tive feature that is independent of the solution x∗, it is not
particularly attractive, especially when � 2i /	2�Ji�� is small.
We next derive the best possible bound, i.e., a bound that
is achievable. We assume that �i � 1.

Theorem 3
(a) If �ij � j ∈ Ji are independent and symmetrically dis-

tributed random variables in �−1�1�, then

Pr
(∑
j∈Ji
!ij�ij � �i

)
� B	n��i�� (16)

where

B	n��i�=
1
2n

{
	1−(�

n∑
l=�)�

(
n

l

)
+(

n∑
l=�)�+1

(
n

l

)}

= 1
2n

{
	1−(�

(
n

�)�
)
+

n∑
l=�)�+1

(
n

l

)}
� (17)

where n= �Ji�, ) = 	�i+ n�/2, and (= )−�)�.
(b) The bound (16) is tight for �ij having a discrete

probability distribution: Pr	�ij = 1� = 1/2 and Pr	�ij =
−1�= 1/2, !ij = 1, an integral value of �i � 1, and �i + n
being even.
(c) The bound (16) satisfies

B	n��i�� 	1−(�C	n� �)��+
n∑

l=�)�+1
C	n� l�� (18)

where

C	n� l�

=




1
2n
� if l= 0 or l= n�
1√
2+

√
n

	n− l�l
· exp

(
n log

(
n

2	n− l�
)
+ l log

(
n− l
l

))
�

otherwise�

(19)

(d) For �i = #
√
n,

lim
n→�B	n��i�= 1−,	#�� (20)

where

,	#�= 1√
2+

∫ #

−�
exp

(
−y

2

2

)
dy

is the cumulative distribution function of a standard normal.

Proof. See appendix (§8).

Remarks
(a) While Bound (16) is the best possible (Theo-

rem 3(b)), it poses computational difficulties in evaluating
the sum of combination functions for large n. For this rea-
son, we have calculated Bound (18), which is simple to
compute and, as we will see, also very tight.
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Figure 1. Comparison of probability bounds for n= �Ji� = 10.
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(b) Equation (20) is a formal asymptotic theorem that
applies when �i = #

√
n. We can use the De Moivre-Laplace

approximation of the binomial distribution to obtain the
approximation

B	n��i�≈ 1−,
(
�i− 1√
n

)
� (21)

that applies even when �i does not scale as #
√
n.

(c) We next compare the bounds: (11) (Bound 1), (16)
(Bound 2), (18) (Bound 3), and the approximate bound
(21) for n = �Ji� = 10�100�2�000. In Figure 1 we com-
pare Bounds 1 and 2 for n= 10, which clearly shows that
Bound 2 dominates Bound 1 (in this case there is no need
to calculate Bound 3 and the approximate bound as n is
small). In Figure 2 we compare all bounds for n= 100. It is
clear that Bound 3, which is simple to compute, is identical
to Bound 2, and both Bounds 2 and 3 dominate Bound 1 by
an order of magnitude. The approximate bound provides a
reasonable approximation to Bound 2. In Figure 3 we com-
pare Bounds 1 and 3 and the approximate bound for n=
2�000. Bound 3 is identical to the approximate bound, and
both dominate Bound 1 by an order of magnitude. In sum-
mary, in the remainder of the paper we will use Bound 3,
as it is simple to compute, it is a true bound (as opposed
to the approximate bound), and it dominates Bound 1. To
amplify this point, Table 1 illustrates the choice of �i as a

function of n= �Ji� so that the probability that a constraint
is violated is less than 1%, where we used Bounds 1, 2, 3,
and the approximate bound to evaluate the probability. It
is clear that using Bounds 2, 3, or the approximate bound
gives essentially identical values of �i, while using Bound 1
leads to unnecessarily higher values of �i. For �Ji� = 200,
we need to use � = 33�9, i.e., only 17% of the number
of uncertain data, to guarantee violation probability of less
than 1%. For constraints with a lower number of uncertain
data, such as �Ji� = 5, it is necessary to ensure full protec-
tion, which is equivalent to Soyster’s method. Clearly, for
constraints with a large number of uncertain data, the pro-
posed approach is capable of delivering less conservative
solutions compared to Soyster’s method.

4.1. On the Conservatism of Robust Solutions

We have argued so far that the linear optimization frame-
work of our approach has some computational advan-
tages over the conic quadratic framework of Ben-Tal and
Nemirovski (1998, 1999, 2000), El-Ghaoui et al. (1998),
and El-Ghaoui and Lebret (1997), especially with respect
to discrete optimization problems. Our objective in this sec-
tion is to provide some insight, but not conclusive evidence,
on the degree of conservatism for both approaches.
Given a constraint a′x � b, with a ∈ �ā − â� ā + â�,

the robust counterpart of Ben-Tal and Nemirovski (1998,
1999, 2000), El-Ghaoui et al. (1998), and El-Ghaoui and
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Figure 2. Comparison of probability bounds for n= �Ji� = 100.
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Figure 3. Comparison of probability bounds for n= �Ji� = 2�000.
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Table 1. Choice of �i as a function of n= �Ji� so that
the probability of constraint violation is less
than 1%.

�i from �i from �i from�Ji� Bound 1 Bounds 2, 3 Approx.

5 5 5 5
10 9�6 8�2 8�4
100 30�3 24�3 24�3
200 42�9 33�9 33�9

2,000 135�7 105 105

Lebret (1998) in its simplest form of ellipsoidal uncertainty
(Formulation (3) includes combined interval and ellipsoidal
uncertainty) is:

ā′x+�� �Ax�� b�
where �A is a diagonal matrix with elements âi in the diag-
onal. Ben-Tal and Nemirovski (2000) show that under the
model of data uncertainty U for a, the probability that the
constraint is violated is bounded above by exp	−�2/2�.
The robust counterpart of the current approach is

ā′x+�	x� ��� b�
where we assumed that � is integral and

�	x� ��= max
S� �S�=�

∑
i∈S
âi�xi��

From Equation (11), the probability that the constraint is
violated under the model of data uncertainty U for a is
bounded above by exp	−� 2/	2n��. Note that we do not use
the stronger bound (16) for simplicity.
Let us select � =�√

n so that the bounds for the prob-
ability of violation are the same for both approaches. The
protection levels are �� �Ax� and �	x� ��. We will compare
the protection levels both from a worst- and an average-case
point of view in order to obtain some insight on the degree
of conservatism. To simplify the exposition we define yi =
âi�xi�. We also assume without loss of generality that y1 �
y2 � · · · � yn � 0� Then the two protection levels become
��y� and ∑�

i=1 yi.
For � = #√n, and y01 = · · · = y0� = 1, y0k = 0 for k �

�+1, we have∑�
i=1 y

0
i = � = #√n, while ��y� = #3/2n1/4;

i.e., in this example the protection level of the conic
quadratic framework is asymptotically smaller than our
framework by a multiplicative factor of n1/4. This order of
the magnitude is, in fact, worst possible, since

�∑
i=1
yi �

√
��y� =

√
n

�
	��y���

which for � = #√n leads to
�∑
i=1
yi �

n1/4

#1/2
	��y���

Moreover, we have

��y���
√√√ �∑

i=1
y2i + y2� 	n− ��

��

√√√ �∑
i=1
y2i +

�∑
i=1
y2i

(
n− �
� 2

)

= �√
n

√√√ �∑
i=1
y2i

√
1+ n− �

� 2

�

√
� 2+ n− �

n

�∑
i=1
yi�

If we select � = #√n, which makes the probability of vio-
lation exp	−#2/2�, we obtain that

��y��
√
1+ #2

�∑
i=1
yi�

Thus, in the worst case the protection level of our frame-
work can only be smaller than the conic quadratic frame-
work by a multiplicative factor of a constant. We conclude
that in the worst case the protection level for the conic
quadratic framework can be smaller than our framework by
a factor of n1/4, while the protection of our framework can
be smaller than the conic quadratic framework by at most
a constant.
Let us compare the protection levels on average, how-

ever. In order to obtain some insight, let us assume that yi
are independently and uniformly distributed in �0�1�. Sim-
ple calculations show that for the case in question (� =
�/

√
n, � = #√n)

E���y��=-	√n�� E

[
max
S� �S�=�

∑
i∈S
yi

]
=-	√n��

which implies that on average the two protection levels are
of the same order of magnitude.
It is admittedly unclear whether it is the worst or the

average case we presented which is more relevant, and thus
the previous discussion is inconclusive. It is fair to say,
however, that both approaches allow control of the degree
of conservatism by adjusting the parameters � and �.
Moreover, we think that the ultimate criterion for compar-
ing the degree of conservatism of these methods will be
computation in real problems.

4.2. Local Sensitivity Analysis of the
Protection Level

Given the solution of Problem (7), it is desirable to esti-
mate the change in the objective function value with respect
to the change of the protection level �i. In this way we
can assess the price of increasing or decreasing the protec-
tion level �i of any constraint. Note that when �i changes,
only one parameter in the coefficient matrix in Problem (7)
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changes. Thus, we can use results from sensitivity analysis
(see Freund 1985 for a comprehensive analysis) to under-
stand the effect of changing the protection level under non-
degeneracy assumptions.

Theorem 4. Let z∗ and q∗ be the optimal nondegenerate
primal and dual solutions for the linear optimization Prob-
lem (7) (under nondegeneracy, the primal and dual optimal
solutions are unique). Then, the derivative of the objec-
tive function value with respect to protection level �i of the
ith constraint is

−z∗i q∗i � (22)

where z∗i is the optimal primal variable corresponding to
the protection level �i and q

∗
i is the optimal dual variable

of the ith constraint.

Proof. We transform Problem (7) in standard form,

G	�i�=maximize c′x

subject to Ax+ �iziei = b

x� 0�

where ei is an unit vector with a one in the ith position.
Let B be the optimal basis, which is unique under primal
and dual nondegeneracy. If the column �iei corresponding
to the variable zi is not in the basis, then z

∗
i = 0. In this

case, under dual nondegeneracy all reduced costs associated
with the nonbasic variables are strictly negative, and thus a
marginal change in the protection level does not affect the
objective function value. Equation (22) correctly indicates
the zero variation.
If the column �iei corresponding to the variable zi is in

the basis, and the protection level �i changes by 0�i, then
B becomes B + 0�ieie′i. By the Matrix Inversion Lemma
we have:

	B+0�ieie′i�−1 =B−1− 0�iB
−1eie′iB

−1

1+0�ie′iB−1ei
�

Under primal and dual nondegeneracy, for small changes
0�i, the new solutions preserve primal and dual feasibil-
ity. Therefore, the corresponding change in the objective
function value is,

G	�i+0�i�−G	�i�=−0�ic
′
BB

−1eie′iB
−1b

1+0�ie′iB−1ei

=− 0�iz
∗
i q

∗
i

1+0�ie′iB−1ei
�

where cB is the part of the vector c corresponding to the
columns in B. Thus,

G′	�i�= lim
0�i→0

G	�i+0�i�−G	�i�
0�i

=−z∗i q∗i � �

Remark. An attractive aspect of Equation (22) is its sim-
plicity, as it only involves the primal optimal solution cor-
responding to the protection level �i and the dual optimal
solution corresponding to the ith constraint.

5. Correlated Data
So far we have assumed that the data are independently
uncertain. It is possible, however, that the data are corre-
lated. In particular, we envision that there are few sources
of data uncertainty that affect all the data. More precisely,
we assume that the model of data uncertainty is as follows.

Correlated Model of Data Uncertainty C. Consider
a particular row i of the matrix A and let Ji the set of
coefficients in row i that are subject to uncertainty. Each
entry aij , j ∈ Ji is modeled as
ãij = aij +

∑
k∈Ki

�̃ikgkj

and �̃ik are independent and symmetrically distributed ran-
dom variables in �−1�1�.
Note that under this model there are only �Ki� sources of

data uncertainty that affect the data in row i. Note that these
sources of uncertainty affect all the entries aij , j ∈ Ji. For
example, if �Ki� = 1, then all data in a row are affected by a
single random variable. For a concrete example, consider a
portfolio construction problem in which returns of various
assets are predicted from a regression model. In this case,
there are a few sources of uncertainty that globally affect
all the assets classes.
Analogously to (4), we propose the following robust

formulation:

maximize c′x

subject to∑
j

aijxj + max
�Si∪�ti��Si⊆Ki� �Si �=��i�� ti∈Ki\Si�

{∑
k∈Si

∣∣∣∣∑
j∈Ji
gkjxj

∣∣∣∣
+ 	�i−��i��

∣∣∣∣∑
j∈Ji
gtijxj

∣∣∣∣
}
� bi ∀i

l� x� u� (23)

which can be written as a linear optimization problem
as follows:

maximize c′x

subject to
∑
j

aijxj + zi�i+
∑
k∈Ki

pik � bi ∀i

zi+pik � yik ∀i� k ∈Ki
− yik �

∑
j∈Ji
gkjxj � yik ∀i� k ∈Ki

lj � xj � uj ∀j
pik� yik � 0 ∀i� k ∈Ki
zi � 0 ∀i�

(24)

Analogously to Theorem 3, we can show that the probabil-
ity that the ith constraint is violated is at most B	�Ki�� �i�,
defined in Equation (16).
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6. Experimental Results
In this section, we present three experiments illustrating
our robust solution to problems with data uncertainty. In
the first experiment, we show that our methods extend to
discrete optimization problems with data uncertainty, by
solving a knapsack problem with uncertain weights. The
second example is a simple portfolio optimization prob-
lem from Ben-Tal and Nemirovski (1999), which has data
uncertainty in the objective function. In the last experiment
we apply our method to a problem PILOT4 from the well-
known Net Lib collection to examine the effectiveness of
our approach to real-world problems.

6.1. The Robust Knapsack Problem

The proposed robust formulation in Theorem 1 in the case
in which the nominal problem is a mixed integer program-
ming (MIP) model—i.e., some of the variables in the vector
x take integer values—is still an MIP formulation, and thus
can be solved in the same way that the nominal problem
can be solved. Moreover, both the deterministic guarantee
as well as the probabilistic guarantee (Theorem 3) that our
approach provides is still valid. As a result, our approach
applies for addressing data uncertainty for MIPs. To the
best of our knowledge, there is no prior research in robust
discrete optimization that is both tractable computation-
ally and involves a probabilistic guarantee for constraint
violation.
In this section, we apply our approach to zero-one knap-

sack problems that are subject to data uncertainty. Our
objective in this section is to examine whether our approach
is computationally tractable and whether it succeeds in
reducing the price of robustness.
The zero-one knapsack problem is the following discrete

optimization problem:

maximize
∑
i∈N
cixi

subject to
∑
i∈N
wixi � b

xi ∈ �0�1��
Although the knapsack problem is NP-hard, for problems
of moderate size, it is often solved to optimality using
state-of-the-art MIP solvers. For this experiment, we use
CPLEX 6.0 to solve to optimality a random knapsack prob-
lem of size �N � = 200.
Regarding the uncertainty model for data, we assume

the weights w̃i are uncertain, independently distributed, and
follow symmetric distributions in �wi − 5i�wi + 5i�. An
application of this problem is to maximize the total value
of goods to be loaded on a cargo that has strict weight
restrictions. The weight of the individual item is assumed
to be uncertain, independent of other weights, and follows
a symmetric distribution. In our robust model, we want to
maximize the total value of the goods but allow a maximum

of 1% chance of constraint violation. The robust model of
Theorem 1 is as follows:

maximize
∑
i∈N
cixi

subject to DS
∑
i∈N
wixi+ 7	x���� b

xi ∈ �0�1��
where

7	x���= max
�S∪�t��S⊆N� �S�=���� t∈N\S�

{∑
j∈S
5jxj + 	� −����5txt

}
�

For the random knapsack example, we set the capacity
limit b to 4,000, the nominal weight wi being randomly
chosen from the set �20�21� � � � �29�, and the cost ci
randomly chosen from the set �16�17� � � � �77�. We set the
weight uncertainty 5i to equal 10% of the nominal weight.
The time to solve the robust discrete problems to optimality
using CPLEX 6.0 on a Pentium II 400 PC ranges from 0.05
to 50 seconds.
Figure 4 illustrates the effect of the protection level on

the objective function value. In the absence of protection
to the capacity constraint, the optimal value is 5,592. How-
ever, with maximum protection, that is, admitting Soyster’s
(1973) method, the optimal value is reduced by 5.5% to
5,283. In Figure 5, we plot the optimal value with respect to
the approximate probability bound of constraint violation.
In Table 2, we present a sample of the objective function
value and the probability bound of constraint violation.
It is interesting to note that the optimal value is mar-

ginally affected when we increase the protection level. For
instance, to have a probability guarantee of at most 0.57%
chance of constraint violation, we only reduce the objec-
tive by 1.54%. We can summarize the key insights in this
example:
1. Our approach succeeds in reducing the price of

robustness; that is, we do not heavily penalize the objective
function value in order to protect ourselves against con-
straint violation.
2. The proposed robust approach is computationally

tractable in that the problem can be solved in reasonable
computational times.

6.2. A Simple Portfolio Problem

In this section, we consider a portfolio construction prob-
lem consisting of a set of N stocks 	�N � = n�. Stock i has
return p̃i which is of course uncertain. The objective is to
determine the fraction xi of wealth invested in stock i so as
to maximize the portfolio value

∑n
i=1 p̃ixi. We model the

uncertain return p̃i as a random variable that has an arbi-
trary symmetric distribution in the interval �pi−8i�pi+8i�,
where pi is the expected return and 8i is a measure of the
uncertainty of the return of stock i. We further assume that
the returns p̃i are independent.
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Figure 4. Optimal value of the robust knapsack formulation as a function of � .
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Figure 5. Optimal value of the robust knapsack formulation as a function of the probability bound of constraint violation
given in Equation (18).
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Table 2. Results of robust knapsack solutions.

� Probability Bound Optimal Value Reduction (%)

2�8 4�49× 10−1 5,585 0�13
14�1 1�76× 10−1 5,557 0�63
25�5 4�19×10−2 5,531 1�09
36�8 5�71× 10−3 5,506 1�54
48�1 4�35×10−4 5,481 1�98
59�4 1�82×10−5 5,456 2�43
70�7 4�13× 10−7 5,432 2�86
82�0 5�04×10−9 5,408 3�29
93�3 3�30×10−11 5,386 3�68
104�7 1�16×10−13 5,364 4�08
116�0 2�22×10−16 5,342 4�47

The classical approach in portfolio construction is to use
quadratic optimization and solve the following problem:

maximize
n∑
i=1
pixi−9

n∑
i=1
82i x

2
i

subject to
n∑
i=1
xi = 1

xi � 0�

where we interpret 8i as the standard deviation of the
return for stock i, and 9 is a parameter that controls the
trade-off between risk and return. Applying our approach,
we will solve instead the following problem (which can
be reformulated as a linear optimization problem as in
Theorem 7):

maximize z

subject to z�
n∑
i=1
pixi−�	x� ��

n∑
i=1
xi = 1

xi � 0�

(25)

where

�	x���= max
�S∪�t��S⊆N��S�=����t∈N\S�

{∑
j∈S
8jxj+	�−����8txt

}
�

In this setting, � is the protection level of the actual port-
folio return in the following sense. Let x∗ be an optimal
solution of Problem (25) and let z∗ be the optimal solution
value of Problem (25). Then, x∗ satisfies that Pr	p̃′x∗ < z∗�
is less than or equal to the bound in Equation (18). Ben-Tal
and Nemirovski (1999) consider the same portfolio prob-
lem using n= 150,

pi = 1�15+ i
0�05
150

� 8i =
0�05
450

√
2in	n+ 1��

Note that in this experiment, stocks with higher returns are
also more risky.

Optimization Results. Let x∗	�� be an optimal solu-
tion to Problem (25) corresponding to the protection level � .
A classical measure of risk is the standard deviation,

w	��=
√∑
i∈N
82i 	x

∗
i 	���

2�

We first solved Problem (25) for various levels of � .
Figure 6 illustrates the performance of the robust solution
as a function of the protection level � , while Figure 7 shows
the solution itself for various levels of the protection level.
The solution exhibits some interesting “phase transitions”
as the protection level increases:
1. For � � 17, both the expected return as well as the

risk-adjusted return (the objective function value) gradually
decrease. Starting with � = 0, for which the solution con-
sists of the stock 150 that has the highest expected return,
the portfolio becomes gradually more diversified, putting
more weight on stocks with higher ordinal numbers. This
can be seen for example for � = 10 in Figure 7.
2. For 17<� � 41, the risk-adjusted return continues to

gradually decrease as the protection level increases, while
the expected return is insensitive to the protection level.
In this range, x∗i =

∑
i	1/8i�/8i; i.e., the portfolio is fully

diversified.
3. For � � 41, there is a sudden phase transition (see

Figure 6). The portfolio consists of only stock 1, which
is the one that has the largest risk-adjusted return pi − 8i.
This is exactly the solution given by the Soyster method as
well. In this range, both the expected and the risk-adjusted
returns are insensitive to � .

Simulation Results. To examine the quality of the
robust solution, we run 10,000 simulations of random
yields and compare robust solutions generated by vary-
ing the protection level � . As we have discussed, for the
worst-case simulation, we consider the distribution with
p̃i taking with probability 1/2 the values at pi ± 8i. In
Figure 8, we compare the theoretical bound in Equa-
tion (18) with the fraction of the simulated portfolio returns
falling below the optimal solution, z∗. The empirical results
suggest that the theoretical bound is close to the empirically
observed values.
In Table 3, we present the results of the simulation indi-

cating the trade-off between risk and return. The corre-
sponding plots are also presented in Figures 9 and 10. As
expected, as the protection level increases, the expected
and maximum returns decrease, while the minimum returns
increase. For instance, with � � 15, the minimum return is
maintained above 12% for all simulated portfolios.
This example suggests that our approach captures the

trade-off between risk and return, very much like the mean
variance approach, but does so in a linear framework.
Additionally, the robust approach provides a deterministic
guarantee about the return of the portfolio as well as a proba-
bilistic guarantee that is valid for all symmetric distributions.
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Figure 6. The return and the objective function value (risk-adjusted return) as a function of the protection level � .
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Figure 7. The solution of the portfolio for various protection levels.
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Figure 8. Simulation study of the probability of underperforming the nominal return as a function of � .

0 5 10 15 20 25 30 35 40 45 50

10
−4

10
−3

10
−2

10
−1

Γ

Theoretiocal bound
Actual probability of underperforming

6.3. Robust Solutions of a Real-World Linear
Optimization Problem

As noted in Ben-Tal and Nemirovski (2000), optimal solu-
tions of linear optimization problems may become severely
infeasible if the nominal data are slightly perturbed. In
this experiment, we applied our method to the problem
PILOT4 from the Net Lib library of problems. Problem
PILOT4 is a linear optimization problem with 411 rows,
1,000 columns, 5,145 nonzero elements, and optimum
objective value, −2�581�1392613. It contains coefficients
such as 717.562256, −1�078783, −3�053161, −0�549569,
−22�634094, and −39�874283, which seem unnecessarily
precise. In our study, we assume that the coefficients of
this type that participate in the inequalities of the formula-

Table 3. Simulation results given by the robust solution.

Prob. Exp. Min. Max.
� Violation Return Return Return w	��

0 0�5325 1�200 0�911 1�489 0�289
5 0�3720 1�184 1�093 1�287 0�025
10 0�2312 1�178 1�108 1�262 0�019
15 0�1265 1�172 1�121 1�238 0�015
20 0�0604 1�168 1�125 1�223 0�013
25 0�0250 1�168 1�125 1�223 0�013
30 0�0089 1�168 1�125 1�223 0�013
35 0�0028 1�168 1�125 1�223 0�013
40 0�0007 1�168 1�125 1�223 0�013
45 0�0002 1�150 1�127 1�174 0�024

tion have a maximum 2% deviation from the corresponding
nominal values. Table 4 presents the distributions of the
number of uncertain data in the problem. We highlight that
each of the constraints has, at most, 29 uncertain data.
We solve the robust Problem (7) and report the results

in Table 5. In Figure 11, we present the efficient frontier
of the probability of constraint violation and cost.
We note that the cost of full protection (Soyster’s

method) is equal to −2�397�5798763. In this example, we
observe that relaxing the need of full protection still leads
to a high increase in the cost unless one is willing to accept
unrealistically high probabilities for constraint violation.
We attribute this to the fact that there are very few uncertain
coefficients in each constraint (Table 4), and thus proba-
bilistic protection is quite close to deterministic protection.

7. Conclusions
The major insights from our analysis are:
1. Our proposed robust methodology provides solutions

that ensure deterministic and probabilistic guarantees that
constraints will be satisfied as data change.
2. Under the proposed method, the protection level

determines probability bounds of constraint violation,
which do not depend on the solution of the robust model.
3. The method naturally applies to discrete optimization

problems.
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Figure 9. Empirical result of expected, maximum, and minimum yield.
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Figure 10. Trade-offs between probability of underperforming and returns.
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Table 4. Distributions of �Ji� in PILOT4.
�Ji� # Constraints �Ji� # Constraints

1 21 24 12
11 4 25 4
14 4 26 8
15 4 27 8
16 4 28 4
17 8 29 8
22 4

4. Comparing Figure 5, for a problem with n = 200
uncertain coefficients, and Figure 11, for a problem in
which the maximum number of uncertain coefficients per
row is 29, we observe that in order to have probability
of violation of the constraints 10−4 we have an objective
function change of 2% in the former case and 7% in the
latter case. We feel that this is indicative of the fact that
the attractiveness of the method increases as the number of
uncertain data increases.

8. Appendix: Proof of Theorem 3
In this appendix we present the proof of Theorem 3.
(a) The proof follows from Proposition 2, Parts (a)

and (b). To simplify the exposition, we will drop the sub-
script i, which represents the index of the constraint. We
prove the bound in (16) by induction on n. We define the

Figure 11. The trade-off between cost and robustness.
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Table 5. The trade-off between optimal
cost and robustness.

Optimal Value % Change Prob. Violation

−2�486�0334864 3�68 0�5
−2�450�4323768 5�06 0�421
−2�433�4959374 5�72 0�345
−2�413�2013332 6�51 0�159
−2�403�1494574 6�90 0�0228
−2�399�2592198 7�05 0�00135
−2�397�8404967 7�10 3�17× 10−5
−2�397�5798996 7�11 2�87× 10−7
−2�397�5798763 7�11 9�96× 10−8

auxiliary quantities:

)	��n�= � + n
2
� (	��n�= )	��n�−�)	��n���

;	s�n�= 1
2n

n∑
l=s

(
n

l

)
�

The induction hypothesis is formulated as follows:

Pr

(
n∑
j=1
!j�j � �

)

�



	1−(	��n��;	�)	��n��� n�
+(	��n�;	�)	��n��+ 1� n� if � ∈ �1� n�

0 if � > n�
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For n= 1, then � = 1, and so )	1�1�= 1, (	1�1�= 0,
and ;	1�1�= 1/2, leading to:
Pr	�1 � ��� Pr	�1 � 0�

�
1
2

= 	1−(	1�1��;	�)	1�1���1�
+(	1�1�;	�)	1�1��+ 1�1��

Assuming the induction hypothesis holds for n, we have

Pr

(
n+1∑
j=1
!j�j��

)

=
∫ 1

−1
Pr

(
n∑
j=1
!j�j��−!n+1�n+1 ��n+1=�

)
dF�n+1	��

=
∫ 1

−1
Pr

(
n∑
j=1
!j�j��−!n+1�

)
dF�n+1	�� (26)

=
∫ 1

0

[
Pr

(
n∑
j=1
!j�j��−!n+1�

)

+Pr
(

n∑
j=1
!j�j��+!n+1�

)]
dF�n+1	�� (27)

� max
9∈�0�!n+1�

{
Pr

(
n∑
j=1
!j�j��−9

)

+Pr
(

n∑
j=1
!j�j��+9

)}∫ 1

0
dF�n+1	��

= 1
2
max

9∈�0�!n+1�

{
Pr

(
n∑
j=1
!j�j��−9

)

+Pr
(

n∑
j=1
!j�j��+9

)}

�
1
2
max

9∈�0�!n+1�
=n	9� (28)

�
1
2
=n	1� (29)

=	1−(	��n+1��;	�)	��n+1���n+1�
+(	��n+1�;	�)	��n+1��+1�n+1�� (30)

where

=n	9�= 	1−(	� −9�n�;	�)	� −9�n��� n�
+(	� −9�n�;	�)	� −9�n��+ 1� n�
+ 	1−(	� +9�n��;	�)	� +9�n��� n�
+(	� +9�n�;	�)	� +9�n��+ 1� n��

Equations (26) and (27) follow from the assumption that
�js are independent, symmetrically distributed random
variables in �−1�1�. Inequality (28) represents the induc-

tion hypothesis. Equation (30) follows from:

=n	1�= 	1−(	� − 1� n��;	�)	� − 1� n��� n�
+(	� − 1� n�;	�)	� − 1� n��+ 1� n�
+ 	1−(	� + 1� n��;	�)	� + 1� n��� n�
+(	� + 1� n�;	�)	� + 1� n��+ 1� n� (31)

= 	1−(	� + 1� n��	;	�)	� + 1� n��− 1� n�
+;	�)	� + 1� n��� n��
+(	� + 1� n�	;	�)	� + 1� n��� n�
+;	�)	� + 1� n��+ 1� n�� (32)

= 2{	1−(	� + 1� n��;	�)	� + 1� n��� n+ 1�
+(	� + 1� n�;	�)	� + 1� n��+ 1� n+ 1�} (33)

= 2{	1−(	��n+ 1��;	�)	��n+ 1��� n+ 1�
+(	��n+ 1�;	�)	��n+ 1��+ 1� n+ 1�}� (34)

Equations (31) and (32) follow from noting that (	� −
1� n�=(	� + 1� n� and �)	� − 1� n�� = �)	� + 1� n��− 1.
Equation (33) follows from the claim that ;	s�n�+;	s+
1� n�= 2;	s+ 1� n+ 1�, which is presented next:

;	s�n�+;	s+ 1� n�= 1

2n

{
n∑
l=s

(
n

l

)
+

n∑
l=s+1

(
n

l

)}

= 1
2n

(
n−1∑
l=s

[(
n

l

)
+
(
n

l+ 1
)]

+ 1
)

= 1
2n

(
n−1∑
l=s

(
n+ 1
l+ 1

)
+ 1

)

= 1
2n

n+1∑
l=s+1

(
n+ 1
l

)
= 2;	s+ 1� n+ 1��

and Equation (34) follows from (	� + 1� n� = (	��n +
1�= 	� + n+ 1�/2.
We are left to show that =n	9� is a monotonically non-

decreasing function in the domain 9 ∈ �0�1�, which implies
that for any 91�92 ∈ �0�1� such that 91 > 92, =n	91�−
=n	92�� 0. We fix � and n. To simplify the notation we
use: (	9�= (	� +9�n�= 	� +9+ n�/2, )	9�= )	� +
9�n�. For any choice of 91 and 92, we have >= �)−91���)−92�� �)92�� �)91�� >+1. Therefore, we consider the
following cases:

For >= �)−91� = �)−92� = �)92� = �)91�,

(−91−(−92=−91−92
2

(91−(92=
91−92
2

=n	91�−=n	92�
= 91−92

2

{
;	>�n�−;	>+1�n�−;	>�n�+;	>+1�n�}

=0�
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For >= �)−91� = �)−92� = �)92�− 1= �)91�− 1,

(−91−(−92=−91−92
2

(91−(92=
91−92
2

=n	91�−=n	92�
= 91−92

2

{
;	>�n�−2;	>+1�n�+;	>+2�n�}

= 91−92
2n+1	n+1�

(
n+1
>+1

)
	1+2>−n�

�
91−92
2n+1	n+1�

(
n+1
>+1

)

·
(
1+2

⌊
1+n−91

2

⌋
−n

)
�0�

For >= �)−91� = �)−92�− 1= �)92�− 1= �)91�− 1,

(−91−(−92=−91−92
2

+1

(91−(92=
91−92
2

=n	91�−=n	92�
=	1−(−91�

{
;	>�n�−2;	>+1�n�+;	>+2�n�}

�0�

For >= �)−91� = �)−92� = �)92� = �)91�− 1,

(−91−(−92=−91−92
2

(91−(92=
91−92
2

−1
=n	91�−=n	92�

=(91
{
;	>�n�−2;	>+1�n�+;	>+2�n�}

�0�

(b) Let �j obey a discrete probability distribution
Pr	�j = 1�= 1/2 and Pr	�j =−1�= 1/2, !j = 1, � � 1 is
integral and � + n is even. Let Sn obey a binomial distri-
bution with parameters n and 1/2. Then,

Pr

(
n∑
j=1
�j � �

)
= Pr	Sn− 	n− Sn�� ��

= Pr	2Sn− n� ��
= Pr

(
Sn �

n+ �
2

)

= 1
2n

n∑
l=	n+��/2

(
n

l

)
� (35)

which implies that the bound (16) is indeed tight.

(c) From Equation (17), we need to find an upper bound
for the function 1/2n

(
n

l

)
. From Robbins (1955) we obtain

for n� 1,
√
2+nn+1/2 exp	−n+ 1/	12n+ 1��
� n!�√

2+nn+1/2 exp	−n+ 1/	12n���
we can establish for l ∈ �1� � � � � n− 1�,
1
2n

(
n

l

)
= n!
2n	n−l�!l!

�
1√
2+

√
n

	n−l�l
·exp

(
1
12n

− 1
12	n−l�+1−

1
12l+1

)

·
(

n

2	n−l�
)n(

n−l
l

)l

�
1√
2+

√
n

	n−l�l
(

n

2	n−l�
)n(

n−l
l

)l

= 1√
2+

√
n

	n−l�l
·exp

(
nlog

(
n

2	n−l�
)
+l log

(
n−l
l

))
� (36)

where Equation (36) follows from

1
12	n− l�+ 1 +

1
12l+ 1 �

2
	12	n− l�+ 1�+ 	12l+ 1�

= 2
12n+ 2 >

1
12n

�

For l= 0 and l= n	1/2n�(n
l

)= 1/2n.
(d) Bound (16) can be written as

B	n��i�= 	1−(�Pr	Sn � �)��+(Pr	Sn � �)�+ 1��
where Sn represents a Binomial distribution with param-
eters n and 1/2. Since Pr	Sn � �)� + 1� � Pr	Sn � �)��,
we have

Pr	Sn � )+ 1�= Pr	Sn � �)�+ 1�� B	n��i�
� Pr	Sn � �)��= Pr	Sn � )��

since Sn is a discrete distribution. For �i = #
√
n, where #

is a constant, we have

Pr
(
Sn− n/2√
n/2

� #+ 2√
n

)
� B	n��i�� Pr

(
Sn− n/2√
n/2

� #

)
�

By the central limit theorem, we obtain that

lim
n→�Pr

(
Sn− n/2√
n/2

� #+ 2√
n

)
= lim
n→�Pr

(
Sn− n/2√
n/2

� #

)
= 1−,	#��

where ,	#� is the cumulative distribution function of a
standard normal. Thus, for �i = #

√
n, we have

lim
n→�B	n��i�= 1−,	#�� �
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